Unit 1: Transformations

Introduction

In grade 11, you studied quadratic functions in great detail. Recall that a quadratic function has the general form:

$$
y=a(x-h)^{2}+k
$$

Also, recall that the graph of a quadratic function is a parabola, where the point (h, k) is the vertex, and the sign of a determines whether the parabola opens up (if a is +) or down (if a is -).

In grade 11, you graphed quadratic functions by finding the vertex and plotting several points on either side of the axis of symmetry (a vertical line passing through the vertex that divides the parabola into two symmetrical halves). For example:

Draw the graph of $f(x)=x^{2}$.

\mathbf{x}	\mathbf{y}

Now draw the graph of $g(x)=(x-2)^{2}+1$ on the same axes.

\mathbf{x}	\mathbf{y}

Note that the graph of $g(x)$ has the exact same shape as the graph of $f(x)$, but is located 2 units to the right and 1 unit up. In fact, you could think of the graph of $g(x)$ as the graph of $f(x)$ moved 2 units right and 1 unit up.

In grade 12, instead of graphing $g(x)=(x-2)^{2}+1$ by finding its vertex and plotting several ordered pairs, we are going to learn to draw the graph by transforming (or moving) the parent graph $f(x)=x^{2} 2$ units to the right and 1 unit up.

By the end of this unit, you will have learned how to translate (move), stretch/compress, and reflect parent graphs. Below are some examples of parent graphs, most of which you should be familiar with from past courses.

$$
y=x
$$

$y=x^{2}$

$$
y=\frac{1}{x}
$$

$$
y=|x|
$$

$$
y=\sqrt{x}
$$

$$
y=x^{3}
$$

